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Abstract

An instability driven by an electron temperature gradient in combination with
sheath boundary conditions at a divertor plate is considered. It is shown that there exists a
mode localized between the divertor plate and the x point.  Further propagation of the
mode is terminated by a strong shear near the x point. A “heuristic” boundary condition
at the control surface situated somewhat below the x point is suggested. The mode
manifests a strong dependence on the radial tilt of the divertor plate, thereby providing
some degree of control over the plasma transport in the divertor leg. Estimates of the
diffusion coefficient show that it may reach the Bohm value.

I.Introduction

A very fast instability driven by sheath boundary conditions was predicted to exist
on the open field lines of fusion devices [1,2]. Its presence is generally not related to the
sign of the field-line curvature, although it becomes somewhat faster in the case of
unfavorable curvature. It was pointed out in Ref. [3] that, in divertor geometry, the most
unstable perturbations (perturbations with large toroidal mode numbers) cannot penetrate
beyond the X point because of strong shearing that leads to a dramatic increase of the
radial wave number and corresponding rapid damping of the perturbations just above the
X point.  Depending on the specifics of the divertor design, low-toroidal-mode-number
perturbations may survive the transition through the X point [4]. Here we consider a
situation where this is not the case and divertor legs are decisively disconnected from the
region above the X point.

This opens up a possibility that the instability will be confined to the region
between the divertor plate and the X point, and will not not penetrate to the upper part of
the scrape-off-layer (SOL).  The reverse effect, an effective decoupling (from the divertor
legs) of the instability above the X point, has been demonstrated in Ref. [5], where the
corresponding mode was called  “resistive X-point mode.”

In a simple heuristic model that we will pursue in this paper, the role of the X-
point is described by a boundary condition imposed on the perturbations on a “control
surface” somewhat below the x point. This boundary condition stems from general
qualitative considerations and seems to be quite robust. We then consider perturbations
similar to those described in Refs. [1,2], with the main driving term proportional to the
gradient of the electron temperature. Boundary conditions on the divertor plate are
similar to those imposed in Ref. [6].



In this paper, we analyze a low-recycling divertor, with plasma parameters almost
constant along a field line. The plasma is assumed to flow to the divertor plate with a
velocity which somewhat exceeds the sound speed. Under such conditions, we find a
robust and rapidly growing mode that may affect the plasma transport in the divertor legs
without affecting it in the scrape off layer above the X point. We find that the tilt of the
divertor plate with respect to the poloidal magnetic field (i.e., a tilt associated with a
rotation of the plate around the toroidal direction; we call it the “radial tilt”) provides a
substantial degree of control over the instability. We provide estimates of the transport
coefficients within a mixing-length approximation.

To put our study in some prospective, we briefly mention earlier papers related to
the sheath-driven instability. The notion that the sheath boundary conditions may affect
the plasma stability can be traced back to the seminal papers by Kunkel and Guillory [7]
and Kadomtsev [8]. In Ref. [1] where the instability was first clearly identified and linked
to SOL problems, finite-beta effects were included. In Ref. [2], effects of finite ion
Larmor radius were added to the analysis. In Ref. [9], finite plasma resistivity was
included and detailed analysis of the instability was carried out for tokamak SOL
conditions. In Ref. [6], the radial tilt of the divertor plate was added to the analysis and
found to be important. In Ref. [3], the aforementioned dramatic role of the X-point shear
in the decoupling the sheath effects from the SOL above the X point was first discussed.
In Ref. [4], it was suggested that low toroidal mode numbers may, in fact, be not very
sensitive to this effect. In Ref. [10], the interference of the sheath-driven mode and
velocity-shear modes was discussed. Later on, a more detailed numerical analysis of the
same problem was carried out in Ref. [11].  In Ref. [12], effect of collisions with neutrals
was added to the analysis. In Ref. [13], effects of  parallel shear were studied. Finally, in
Ref. [5] an extensive analysis of the modes existing in the main part of the SOL and their
interaction with the x-point region was performed. An eikonal technique was used to
consider perturbations in the x-point region and detailed numerical results of the mode
structure were presented. It was found that, in a number of cases, perturbations do not
penetrate below the x-point.

II. The Model

For this initial analysis we limit ourselves to a simplest model where only the
most essential features of the full problem are taken into consideration. We use a slab
model of the section of the divertor leg between the divertor plate and a “control surface”
situated somewhat below the x-point (Fig. 1). The exact location of this surface is not
very important, especially in the case of “long” divertor legs. We use Cartesian
coordinates with the axes x, y, and z being analogs of radial, poloidal and toroidal
coordinates, respectively. The origin is situated on the control plane. We allow for the
possibility that the normal to the plate is not collinear with axis y (the aforementioned
“radial tilt” characterized by angle α). The distance between the control plane and the
divertor plate along the axis y (i.e., in the poloidal direction) is l(y).

The plasma is assumed to enter the divertor leg through the control surface at
some speed u. The unperturbed plasma parameters are assumed not to vary between the
control surface and the divertor plate. This assumption corresponds to a situation of a



relatively low plasma and neutral density, where the electron temperature is uniform
along field lines and where ionization and charge exchange are negligible.

The most important source of the instability described in [1,2] is the radial
variation of the electron temperature. Accordingly, we assume that the density and the
ion temperature do not depend on the coordinate x, and the only plasma parameter
varying in the x direction is the electron temperature Te(x). (It will soon become clear
that neglecting gradients of density and ion temperature is justified if they have the same
or larger scale-length as the electron temperature).

As the electron temperature varies along the coordinate x, so does the plasma
potential. In other words, a radial (x) unperturbed electric field E0 is present in the
plasma. It is roughly equal to

E
T

e
e

0 = −
′Λ

       (1)

where prime here and below means differentiation over x, and Λ is a familiar logarithmic
factor ~ 2-3. This electric field creates a drift, whose poloidal velocity is

vD
zcE B

B
= 0

2       (2)

We assume that the poloidal drift velocity is smaller than the projected poloidal
component of the plasma flow along the field lines,

vD <
B

B
uy       (3)

We consider frequencies well below the ion gyrofrequency and wavenumbers
well below the inverse ion gyroradius. Then the plasma cross-field velocity is determined
by the equation

δ
δϕ

v
B

⊥ =
×∇

c
B2        (4)

The instability will be shown to have a growth rate much higher than the plasma
transit time over the connection length L lB Bz y= / ; accordingly,  the plasma distribution

along the flux tube does not change within the instability growth time. This means that
perturbations of plasma parameters are purely convective, so that the electron
temperature perturbation obeys an equation

∂δ
∂

δ δ
T

t
T Te

D e x e+ ⋅ ∇ = − ′v v       (5)

Perturbations of the plasma density and ion temperature are zero, as the corresponding
unperturbed quantities are uniform. The plasma momentum can then be written as:
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δ
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      (6)

After that, we consider perturbations with cross-field scale length much smaller
then the SOL width ∆ and therefore use a local WKB analysis, with perturbations of the
form exp( )− + ⋅i iω q r , with the wave vector perpendicular to the magnetic field,
q B⋅( ) = 0. It is convenient to present the vector q as a sum of the two components: a

radial component qr and the component k= q-qr perpendicular to both the magnetic field
and the axis x (Fig.1). For such perturbations Eqs. (4)-(6) yield:
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where
Ω = − ⋅ω k vD        (8)

At this point, we use the current continuity equation which allows us to find the parallel
current from the equation ∂ ∂ δj s i|| / = − ⋅ ⊥q j where s is a coordinate along the field line.
Integration of this equation from the upper control surface to the divertor plate with
account for Eq. (7)  yields:

δ δ δϕj j
ic k LMn

B
plate x po

||
( )

||
( int)− =−

2 2

2

Ω
      (9)

To close the set of equations and to arrive at the dispersion relation, we need to impose
boundary conditions relating perturbations of the current and of the potential at the end
surfaces. We discuss this issue in the next two sections.

III. A heuristic model for the “surface conductivity” of the control surface.

Consider the plasma potential perturbations at the “control surface.” In Sec.II we
have described plasma motions that these perturbations would induce in the divertor leg.
Here we discuss the reaction to their presence of the area above the control surface, in the
zone near and above the x-point. As was shown in Ref. [3], a flux-tube with initially
circular cross-section, when passing near the x-point, squeezes very strongly and soon
becomes thinner than the ion gyroradius. As was shown in Ref. [3] and later discussed in
more detail in Ref. [14] (see Eqs. (A.3.19), (A.3.20) of that reference), this happens very
quickly. The situation at this stage is schematically shown on Fig. 2: the ion orbits are
larger than the scale at which potential varies. The effective wave number becomes equal
to

K(s)=qE(s),      (10)
where E is a so called elongation of initially circular flux tube (defined as the ratio of the
major semi-axis of the squeezed flux tube to its initial radius at the control surface).  In
this case, the ion average cross-field velocity is much less than vD.

At the same time, we assume that the wave number K is still much less than the
inverse electron gyroradius: as it turns out, the potential perturbations decay close enough
to the control surface, where the elongation still remains moderate (see below). Under
such circumstances, the presence of the perpendicular electric field iKδϕ leads to electron
cross-field current

δ σ δϕ σ δϕj iK ik E s⊥ = − = −
⊥ ⊥
( ) ( )      (11)

where

σ
ω ν

πω⊥ = pe

Ce

2

24
,      (12)

where and ωpe and ωCe are electron plasma and electron cyclotron frequency, respectively,
and ν is an electron collision frequency.

The divergence of the perpendicular current is balanced by the parallel current
which varies with the distance s:

∂δ
∂

δ σ δϕ
j

s
iK j k E s|| ( )= − = −⊥ ⊥

2      (13)

On the other hand, one has
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∂
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where
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ω
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     (15)

Assuming that K dK ds2 >> / , which holds by a large margin, one finds from Eqs. (13),
(14) that

δϕ δϕ≈ −( )0 exp I (16)
where

I k E s ds
k
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s
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⊥
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Now we find the relationship between the potential and current perturbation at the control
plane:

δ σ
∂ϕ
∂

σ δϕj
s

ks eff|| ||0 0 0= − ==     (18)

where σeff  is defined as

σ σ σ
ω

πωeff
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2

4
     (19)

Remarkably, this result does not contain any details related to the particular formulation
of the problem and is quite robust in this regard.

For the exponential s-dependence of E (see [3], [14]), E s L≈ exp( / *) , where L* is
a characteristic length (typically, 5-10 m), one has

I
k

E s ds
k L
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Ce

s
Ce= ′ ′ = −( )∫ν

ω
ρ
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( )
*

( )
0

1      (20)

From this equation one concludes that, at the distance where the potential perturbation
becomes exponentially small, one has K LCeρ λ~ / *.  As the r.h.s.is typically much less
than 1, the applicability condition (that KρCe<1) is satisfied.

 Still given possible uncertainties of a real problem, we introduce some
phenomenological coefficient G to the expression for σeff, i.e., we write

σ
ω

πωeff
pe

Ce

G
=

2

4
     (21)

and study the sensitivity of the results to the coefficient G in Sec. V of the paper.
The current expressed by Eq. (18) is exactly the current δj x po

||
int−  that enters Eq.

(9). This equation allows us, therefore, to find the parallel current  at the divertor plate,
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Using also Eq. (7), one can now obtain an expression for the normal component of the
current flowing from the plasma to the divertor plate:
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We have neglected the contribution of the first term in Eq. (7) which is kL times smaller
than the contribution from δj||. Further simplifications are related to the smallness of By

that allows one to set B Bz ≈ , and assumption that qr<<k (which, as was shown in Refs.
[2] and [6], corresponds to the largest growth rate for the instability that we are
considering).  This yields:

δ δϕ
σ

α αj i
c k n

B
LM i

B

nc k

B

B

T
n
div eff y e( ) sin cos= −









 +

′











2 2

2

2

2Ω
Ω

     (24)

IV. Sheath boundary condition at the divertor plate

The sheath boundary condition suitable for this problem was derived in Ref. [6],
in a linearized form. It was later derived in a more general form (Eq. (19) in Ref. [15]),
without an assumption of the smallness of the perturbations. Note that in our present
notation, the angle α used in reference [15] should be replaced by α(By/Bz). Linearizing
Eq. (19) of Ref. [15],  or, equivalently, using Eq. (37) of Ref. [6] we obtain:
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     (25)

Note that there is a sizeable logarithmic factor Λ in the term arising from the electron
temperature perturbation – it demonstrates that even if we allowed for the presence of
unperturbed gradients of the plasma density or the ion temperature and thereby make
perturbations of these latter quantities non-zero, the ′Te  drive is still more prominent.

V. Analysis of the dispersion relation

Equating expressions (24) and (25), one finds the following dispersion relation:

Ω Ω Ω Ω Ω Γ Γ2
1 2 3 1

2
2
2 0+ + +( ) − − =i i i      (26)
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The meaning of various terms in the dispersion relation (26) is as follows: The first term
represents the inertia of the flute. Frequency Ω1 describes the Kunkel-Guillory sheath
resistivity. Frequency Ω2  describes correction to the sheath current-voltage characteristic
associated with the tilt of the plate. Frequency Ω3 describes the effect of the X-point
resistivity suggested in this paper. The term Γ1

2 , together with the frequency Ω1, describes



the instability of Refs. (1), (2). The term Γ2
2  describes an instability associated with the

work performed by the electron pressure when the flute is sliding over the surface of the
tilted plate, so that the flute length varies. This is possible because the sheath is
essentially perfectly reflecting for the electron gas. This instability in its “pure” form (i.e.,
with all the terms in (26), except for the first and the last are dropped) is essentially
identical to the flute instability, as shown in Ref. [16].

We now switch to convenient dimensionless variables first introduced in Ref. [6]:
ˆ / ; ˆ /Ω Ω Ω= =0 0k k k      (29)
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∆ = ′T Te e/ | |      (32)
The dispersion relation then becomes
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We assume that ′ <Te 0. In the opposite case (as it would be in the private flux region), the
sign of the last two terms should be changed to “-”. All the characteristics of the system
(except for geometrical parameters) are folded into a single dimensionless parameter
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As a numerical example, consider a medium-scale tokamak, with the following
parameters of the divertor: B=1 T, By=0.1 T, l=50 cm, L=500 cm, ∆=5cm, Te=30 eV, and
Mu2=2Te, hydrogen plasma. Taking L to be 2.5, one finds that, for these parameters, k0=3
cm-1, whereas the ion gyroradius ρi, evaluated for the electron temperature, is 0.08 cm. In
other words, the applicability conditions for our analysis,

ρi<k0
-1< ∆,     (35)

is satisfied. The characteristic frequency Ω0 is much higher than the inverse transit time,
Ω0 ~30(u/L)~5×105 s-1. It is, however, more than two orders of magnitude less than the
ion gyro-frequency. The value of C is C=0.4.

For the case where radial tilt is absent (α=900), the plot of the growth rate vs. the
wave number for several values of the parameter G is shown in Fig. 3. One sees that the
results are not very sensitive to the possible uncertainty of the numerical value of G.

In Fig. 4, we plot the growth rates for various values of the tilt. One sees that the
“unfavorable “(α>0) tilt  leads to a substantial increase of the growth rate. At large k’s the
instability becomes similar to a hydrodynamic flute instability driven by the unfavorable



curvature. In our case, the drive is, however,  different: it is related to the liberation of the
electron energy in the course of the flute sliding along the tilted surface of the divertor
plate.  For “favorable” tilt, the instability gets suppressed compared to the α=900 case.

VI. Discussion

In the present paper, we suggested a model that describes the effect of an x-point
on the perturbations below this point in terms of a simple boundary condition. The
formulation of this condition is based on the observation that, due to the strong x-point
shear,  the radial wave number of a flute-like perturbation becomes large compared to the
inverse ion gyroradius, and a cross-field electron conductivity terminates the perturbation
near the x point. For the plasma in the divertor leg, the boundary condition relates
potential perturbations on some “control surface” below the x-point to the parallel
currents closing in the x-point vicinity. This relation can be expressed in terms of some
“effective electrical conductivity” which does not depend on any plasma parameters but
the density (Eq. (19)). Still, we call this model “heuristic”, because it is not based on a
detailed analysis of the potential perturbations in the x-point zone. So, we introduce a
numerical coefficient G which accounts for this uncertainty and make a parametric study
of its effect on the instability. We find this effect insignificant.

These observations allow one to study the instability in the divertor leg separately
from the processes going on beyond the x-pint.. With the boundary condition of the
aforementioned type on the control surface, and a sheath boundary condition on the
divertor plane, we analyze the instability driven by the electron temperature gradient. Its
growth rate turns out to be strongly affected by the radial tilt of the divertor plate. For one
sign of the tilt, the instability increases in the common flux region and decreases in the
private flux region and vice versa for the opposite sign. This provides a potentially
interesting tool for controlling transport in divertors.

The characteristic diffusion coefficient, which can be estimated in the mixing
length approximation, is
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It scales as 1/B2 but is much greater than the classical value. For the numerical example
mentioned in Sec.V, it is close to the Bohm value. It becomes a few times greater than
Bohm for the proper radial tilt of the divertor plate. So, potentially, for a divertor with
long legs, this instability may provide additional opportunities for spreading the plasma
over a large area of the divertor plate and reducing heat loads.

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract # W-
7405-Eng-48.

References

1. H.Berk, D. D. Ryutov, Yu. A.Tsidulko  JETP Lett., 52, 23 (1990).



2. H.Berk, D. D. Ryutov, Yu. A.Tsidulko. Phys.Fluids, B3, 1346 (1991).
3. D.Farina, R.Pozzoli, D. Ryutov. Nuclear Fusion, 33, 1315 (1993).
4. R.H. Cohen, D.D. Ryutov. Contrib. Plasma Phys., 36, 161 (1996).
5. J.R. Myra, D.A. D’Ippolito, X.Q.  Xu, R.H. Cohen. Phys. Plasmas, 7, 4622 (2000).
6. D.Farina, R.Pozzoli, D. Ryutov. Plasma Phys. Contr. Fusion, 35, 1271 (1993).
7. W. Kunkel, J. Guillory. In: “Phenomena in Ionized Gases” (Proc. &th Conf. Belgrade,
1965) Vol. 2, p. 702, Belgrade, 1966
8. B.B. Kadomtsev, ibid, p. 610.
9. H.L. Berk, R.H. Cohen, D.D. Ryutov,Y.A. Tsidulko, X.Q. Xu. Nuclear Fusion, 33, 263
(1993).
10. K.Lotov, D. Ryutov, J. Weiland. Physica Scripta, 50,  153 (1994).
11. D.R. McCarthy, P.J. Catto, S.I. Krasheninnikov. Phys. Plasmas, 8, 750 (2001).
12. X.Q. Xu, R.H. Cohen RH. Plasma Phys. Contr. Fusion, 35, 1071 (1993).
13. Y.A. Tsidulko, H.L. Berk, R.H. Cohen. Physics of Plasmas. 1, 1199 (1994)
14. D.D. Ryutov, R.H. Cohen, P. Helander. Plasma Phys. Contr. Fusion, 43, 1399,
(2001).
15. R.H.Cohen, D.D. Ryutov. Phys. Plasmas, 2, 2011 (1995).
16. D.Farina, R.Pozzoli, D.D. Ryutov. Phys.Fluids, v.B5, p.4055 (1993).



K

n

∇Te

α

Control
surface

α

y

x

x=radial,
y=poloidal,
z=toroidal
(z directed away
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Fig. 1. a) The geometry of a tokamak with a poloidal
divertor. Divertor legs are assumed to be long enough, so
that exact location of the control surface near the x-point
Is unimportant. b) An enlarged depiction of the divertor
leg between the controlled surface (dashed line) and the
divertor plate (a common flux region is shown; the
separatrix is the left boundary of the plasma slab).

Fig. 2. The structure of the potential perturbation at some
distance above the control surface, with a few ion gyro-orbits.
The local wave vector K is directed almost perpendicularly to
the flux surface and is larger than the inverse ion gyroradius.
The average cross-velocity of the ions is therefore much less
than vD. Electrons, on the other hand are magnetized.
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Fig.3. The dimensionless growth rate for α=0
and various values of the parameter G.

Fig.4. The dimensionless growth rate for
various tilts of the divertor plate. The positive
tilt corresponds to the situation shown on
Fig. 1a. Parameter G is equal to 5 in all cases.
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